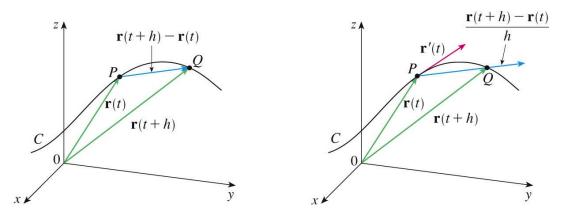

Lesson 8. Derivatives and Integrals of Vector Functions

0 Warm up

Example 1. Find these derivatives and integrals.

1 In this lesson...

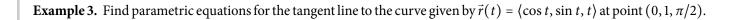

- What are the derivatives and integrals of vector functions?
- How can find the length of an arc?

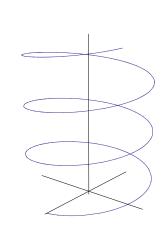
2 Derivatives

• The **derivative** of \vec{r} is

$$\frac{d\vec{r}}{dt} = \vec{r}'(t) = \lim_{h \to 0} \frac{\vec{r}(t+h) - \vec{r}(t)}{h}$$

• Note: the derivative of a vector function is also a vector




- Let *C* be the curve defined by \vec{r}
- Let $\vec{r}(t)$ be the position vector of *P*
- The derivative $\vec{r}'(t)$ is the direction vector of the line tangent to *C* at *P*
 - \Rightarrow Sometimes we refer to $\vec{r}'(t)$ as the **tangent vector**

- The **unit tangent vector** is
- If $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$, where *f*, *g*, and *h* are differentiable functions, then

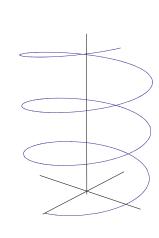
Example 2.

- a. Find the derivative of $\vec{r}(t) = \langle \cos 2t, 1 + t^3, te^{-t} \rangle$.
- b. Find the unit tangent vector at the point where t = 0.

• Differentiation rules:

$$\frac{d}{dt}(\vec{u}(t) + \vec{v}(t)) = \vec{u}'(t) + \vec{v}'(t) \qquad \qquad \frac{d}{dt}(\vec{u}(t) \cdot \vec{v}(t)) = \vec{u}'(t) \cdot \vec{v}(t) + \vec{u}(t) \cdot \vec{v}'(t) \\
\frac{d}{dt}(c\vec{u}(t)) = c\vec{u}'(t) \qquad \qquad \frac{d}{dt}(\vec{u}(t) \times \vec{v}(t)) = \vec{u}'(t) \times \vec{v}(t) + \vec{u}(t) \times \vec{v}'(t) \\
\frac{d}{dt}(f(t)\vec{u}(t)) = f'(t)\vec{u}(t) + f(t)\vec{u}'(t) \qquad \qquad \frac{d}{dt}(\vec{u}(f(t))) = f'(t)\vec{u}'(f(t))$$

3 Integration


- Let *f*, *g*, and *h* be continuous functions
- The **indefinite integral** of a vector function $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ is
- The **definite integral** of a vector function $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle$ from *a* to *b* is
- Note: the integral of a vector function is also a vector

Example 4. Let $\vec{r}(t) = \langle 2 \sin t, 2 \cos t, 2t \rangle$. Find $\int_0^{\pi/2} \vec{r}(t) dt$.

4 Arc length

- Let *C* be a curve with vector equation $\vec{r}(t) = \langle f(t), g(t), h(t) \rangle, a \le t \le b$
- What is the length of C?
- The **arc length** of *C* is
- Similar for curves in 2D

Example 5. Let *C* be the curve defined by $\vec{r}(t) = (\cos t, \sin t, t), 0 \le t \le 2\pi$. Find the length of *C*.

Example 6. Let *C* be the curve defined by $\vec{r}(t) = \langle 1, t^2, t^3 \rangle$, $0 \le t \le 1$. Find the length of *C*.